Comparison between microwave and microwave plasma sintering of nickel powders
نویسندگان
چکیده
There is considerable interest in processing technologies which can lead to more energy efficient sintering of metal powders. The use of microwave sintering in particular leads to reduced energy usage during sintering as the volumetric heating process is considerably more efficient compared with resistance heating. In this study the use of a novel plasma microwave processing technology for the sintering of nickel powder discs is evaluated. The sintering study was carried out on 20 mm diameter by 2 mm thick pressed discs of nickel powder, with mean particle size of 1 μm. The discs were fired in a 5 cm diameter microwave (2.45 GHz) plasma ball under a hydrogen atmosphere at a pressure of 2 kPa. The same discs were also sintered using both non plasma microwave and tube furnace firing. The microwave plasma sintering is very rapid with full disc strength of approx. 1000 N based on 3--point bend tests being achieved within 10 minutes. In contrast the sintering time in the tube furnace involved treatments of up to 6 hours. The non plasma microwave system involved intermediate treatment periods of 1 to 2 hours. Another advantage of the microwave plasma treatment is that the degree of sintering between the individual nickel powder particles can be precisely controlled by the duration of the treatment time in the plasma. There was a broadly linear increase in fired pellet breaking strength with plasma treatment duration. In addition to breaking load, the mechanical properties of the sintered nickel discs were compared based on Rockwell hardness tests and density measurements. The morphology of the sintered discs was compared using microscopy and SEM. This study demonstrated that the plasma microwave sintered discs produced similar or superior performance (depending on processing conditions) to discs fired using the non-plasma microwave and furnace firing conditions. Accurate control of the sample conditions and structure can easily be controlled with the plasma system compared with the conventional systems. The apparent volumetric heating in the microwave systems give a more uniform heating at lower temperatures and allows for greater control and homogeneity.
منابع مشابه
Effect of ball milling on reactive microwave sintering of MgO-TiO2 System
Abstarct In this paper, effect of mechanical activation on microwave reactive sintering of MgO - TiO2 system was investigated. Mixtures of MgO and TiO2 were milled at different times. Mixed powders along with 10 h milled powders were chosen for microwave sintering between 1000- 1400⁰C. Results showed that increasing of temperature up to 1400̊C for mixed powders could not give rise to complete f...
متن کاملEffect of milling time and microwave sintering on microhardness and electrical properties of nano and micro structured cordierite
The purpose of this research is to investigate the mechanical and electrical properties of nano structured cordierite. Nano grain size powders were synthesized through mechanical activation by high-energy ball milling of the starting powders containing 34.86 wt% Al2O3, 51.36 wt% SiO2, and 13.78 wt% MgO. Samples were prepared by conventional and microwave sintering at 1390°C. SEM observations il...
متن کاملMicrowave Sintering of Aluminum Alloys
Until 2000 almost all research in the microwave sintering area was confined to non-metallic materials. However, after the first report by Penn State in 1999 on full sintering of steel powders in microwave, now in the last few years there has been increasing interest in applying microwave energy for processing of variety of metallic materials. The present study is an extension of this work and r...
متن کاملAdvances in Modeling of Microwave Sintering
When traditional sintering techniques are used it is difficult to obtain dense materials with nanometric or submicrometric grain sizes. Microwave sintering was proposed as an alternative technique to overcome the problems of conventional fast heating. However, various problems usually occur when ceramics are sintered by direct microwave heating [1]. Hybrid heating techniques, which combine dire...
متن کاملMicrowave Sintering, Brazing and Melting of Metallic Materials
Microwave energy has been in use for variety of applications for over 50 years. These applications include communication, food processing, wood drying, rubber vulcanization, medical therapy, polymers, etc. In the last two decades microwave heating has been also applied very effectively and efficiently to heat and sinter ceramic materials. Microwave heating is recognized for its various advantag...
متن کامل